Yvonne Jansen - Bibliography on Perception of Physical Size


Arieh, Y., & Marks, L. E. (2002). Context effects in visual length perception: role of ocular, retinal, and spatial location. Perception & Psychophysics, 64(3), 478–492. http://doi.org/10.3758/bf03194719

Attneave, F. (1954). Some informational aspects of visual perception. Psychological Review, 61(3), 183–193. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/13167245

Baird, J. C. (1970). Psychophysical Analysis of Visual Space. Elsevier. Retrieved from https://books.google.com/books?hl=en&lr=&id=XaM3BQAAQBAJ&oi=fnd&pg=PP1&dq=baird+1970+Psychophysical+analysis+of+visual+space&ots=xk3dbbpM1X&sig=9aT1KYKPdrurho1OLqRF_1hTAM0

Bajcsy, R. (1988). Active perception. Proceedings of the IEEE, 76(8), 966–1005. http://doi.org/10.1109/5.5968

Bartholomew, A., Norman, J. F., Swindle, J., Boswell, A., & Norman, H. (2010). Aging and the use of implicit standards in the visual perception of length. Journal of Vision, 10(7), 485–485. http://doi.org/10.1167/10.7.485

Besner, D. (1978). Pattern recognition: Are size and orientation additive factors? Perception & Psychophysics, 23(1), 93. http://doi.org/10.3758/bf03214302

Brandes, D. (2013). The present state of perceptual research in cartography. Retrieved from http://www.maneyonline.com/doi/abs/10.1179/caj.1976.13.2.172

Butler, D. L. (1983). Area of depictions versus insufficient transformations in volume judgments. Perceptual and Motor Skills, 57(3 Pt 1), 999–1004. http://doi.org/10.2466/pms.1983.57.3.999

Butler, D. L., & Overshiner, C. (1983). The role of mental computations in judgments of area and volume. Perception & Psychophysics, 34(6), 593–598. http://doi.org/10.3758/bf03205916

Carswell, C. M. (1992). Choosing specifiers: an evaluation of the basic tasks model of graphical perception. Human Factors, 34(5), 535–554. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1459565

Chen, J., Pappas, T. N., Mojsilovic, A., & Rogowitz, B. (2004). Perceptually-tuned multiscale color-texture segmentation. In Image Processing, 2004. ICIP ’04. 2004 International Conference on (Vol. 2, pp. 921–924 Vol.2). http://doi.org/10.1109/ICIP.2004.1419450

Cleveland, W. S., & McGill, R. (1984). Graphical perception: Theory, experimentation, and application to the development of graphical methods. Journal of the American Statistical Association. Retrieved from http://www.tandfonline.com/doi/abs/10.1080/01621459.1984.10478080

Cleveland, W. S., & McGill, R. (1986). An experiment in graphical perception. International Journal of Man-Machine Studies, 25(5), 491–500. http://doi.org/10.1016/S0020-7373(86)80019-0

Cleveland, W. S., & McGill, R. (1984). The Many Faces of a Scatterplot. Journal of the American Statistical Association, 79(388), 807–822. http://doi.org/10.2307/2288711

Cleveland, W. S., & McGill, R. (1987). Graphical Perception: The Visual Decoding of Quantitative Information on Graphical Displays of Data. Journal of the Royal Statistical Society. Series A , 150(3), 192–229. http://doi.org/10.2307/2981473

Cleveland, W. S. (1984). Graphs in Scientific Publications. The American Statistician, 38(4), 261–269. http://doi.org/10.2307/2683400

Cleveland, W. S. (1993). A Model for Studying Display Methods of Statistical Graphics. Journal of Computational and Graphical Statistics: A Joint Publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America, 2(4), 323–343. http://doi.org/10.2307/1390686

Cleveland, W. S., Harris, C. S., & McGill, R. (1982). Judgments of Circle Sizes on Statistical Maps. Journal of the American Statistical Association, 77(379), 541–547. http://doi.org/10.2307/2287708

Crawford, P. V. (1971). PERCEPTION OF GREY-TONE SYMBOLS. Annals of the Association of American Geographers. Association of American Geographers, 61(4), 721–735. http://doi.org/10.1111/j.1467-8306.1971.tb00821.x

Croxton, F. E., & Stein, H. (1932). Graphic Comparisons by Bars, Squares, Circles, and Cubes. Journal of the American Statistical Association, 27(177), 54–60. http://doi.org/10.1080/01621459.1932.10503227

DeLucia, P. R., & Hochberg, J. (1991). Geometrical illusions in solid objects under ordinary viewing conditions. Perception & Psychophysics, 50(6), 547–554. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1780202

Deregowski, J. B., Allen, R., & McGeorge, P. (2011). On representation of solids: a note. Perception, 40(2), 243–246. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21650096

Dobson, M. W. (1977). Eye Movement Parameters and Map Reading. The American Cartographer, 4(1), 39–58. http://doi.org/10.1559/152304077784080022

Dobson, R. (1971). Size, convexity, and curvature magnitude estimations of curvilinear forms. Perception & Psychophysics, 10(5), 371–374. http://doi.org/10.3758/BF03207463

Ekman, G., & Junge, K. (1961). Psychophysical Relations in Visual Perception of Length, Area and Volume. Scandinavian Journal of Psychology, 2(1), 1–10. http://doi.org/10.1111/j.1467-9450.1961.tb01215.x

Ekman, G. (1958). Two Generalized Ratio Scaling Methods. The Journal of Psychology, 45(2), 287–295. http://doi.org/10.1080/00223980.1958.9916259

Ekman, G., Lindman, R., & Willlam-Olsson, W. (1961). A Psychophysical Study Of Cartographic Symbols. Perceptual and Motor Skills, 13(3), 355–368. http://doi.org/10.2466/pms.1961.13.3.355

Elzer, S., Green, N., Carberry, S., & Hoffman, J. (2006). A Model of Perceptual Task Effort for Bar Charts and its Role in Recognizing Intention. User Modeling and User-Adapted Interaction, 16(1), 1–30. http://doi.org/10.1007/s11257-006-9002-9

Flannery, J. J. (1956). The graduated circle: A description, analysis, and evaluation of a quantitative map symbol. University of Wisconsin--Madison.

Flannery, J. J. (1971). The relative effectiveness of some common graduated point symbols in the presentation of quantitative data. Cartographica: The International Journal for Geographic Information and Geovisualization, 8(2), 96–109. Retrieved from http://utpjournals.metapress.com/index/j6471776745h3667.pdf

Frasca, J. (1979). The effectiveness of two and three dimensional isarithmic surfaces in communicating magnitude, gradient, and pattern information. Retrieved from

Frayman, B. J., & Dawson, W. E. (1981). The effect of object shape and mode of presentation on judgments of apparent volume. Perception & Psychophysics, 29(1), 56–62. http://doi.org/10.3758/BF03198840

Friel, S. N., Curcio, F. R., & Bright, G. W. (2001). Making Sense of Graphs: Critical Factors Influencing Comprehension and Instructional Implications. Journal for Research in Mathematics Education, 32(2), 124–158. http://doi.org/10.2307/749671

Fukumura, N., Otane, S., & Uno, Y. (2004). Integration process of visual and haptic information based on experiments about size perception of solid objects. Systems and Computers in Japan, 35(11), 24–38. http://doi.org/10.1002/scj.10399

Garrett, S., Barac-Cikoja, D., Carello, C., & Turvey, M. T. (1996). A Parallel Between Visual and Haptic Perception of Size at a Distance. Ecological Psychology: A Publication of the International Society for Ecological Psychology, 8(1), 25–42. http://doi.org/10.1207/s15326969eco0801_2

Gibson, J. J. (1952). The visual field and the visual world: a reply to Professor Boring. Psychological Review, 59(2), 149–151. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14920649

Gibson, J. J. (1960). The concept of the stimulus in psychology. The American Psychologist, 15(11), 694. Retrieved from http://psycnet.apa.org/journals/amp/15/11/694/

Green, D. M., & Duncan Luce, R. (1974). Variability of magnitude estimates: A timing theory analysis. Perception & Psychophysics, 15(2), 291–300. http://doi.org/10.3758/BF03213947

Gregory Trafton, J., Marshall, S., Mintz, F., & Trickett, S. B. (2002). Extracting Explicit and Implict Information from Complex Visualizations. In Diagrammatic Representation and Inference (pp. 206–220). Springer Berlin Heidelberg. http://doi.org/10.1007/3-540-46037-3_22

Haber, R. N., & Levin, C. A. (2001). The independence of size perception and distance perception. Perception & Psychophysics, 63(7), 1140–1152. http://doi.org/10.3758/bf03194530

Hagen, M. A., & Teghtsoonian, M. (1981). The effects of binocular and motion-generated information on the perception of depth and height. Perception & Psychophysics, 30(3), 257–265. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7322801

Heer, J., & Bostock, M. (2010). Crowdsourcing Graphical Perception: Using Mechanical Turk to Assess Visualization Design. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 203–212). New York, NY, USA: ACM. http://doi.org/10.1145/1753326.1753357

Hollands, J. G., & Spence, I. (1992). Judgments of change and proportion in graphical perception. Human Factors, 34(3), 313–334. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1634243

Jameson, K., & Andrade, R. G. D’. (1997). 14 It’s not really red, green, yellow, blue: an inquiry into perceptual color space. Color Categories in Thought and Language, 295. Retrieved from https://books.google.com/books?hl=en&lr=&id=ix8l5X5ZBogC&oi=fnd&pg=PA295&dq=perceptual+color+scale&ots=2P_mMftzDg&sig=dfn3Jqutbl59ng9qxPWUZhnWDtE

Kahrimanovic, M., Tiest, W. M. B., & Kappers, A. M. L. (2010). Haptic perception of volume and surface area of 3-D objects. Attention, Perception & Psychophysics, 72(2), 517–527. http://doi.org/10.3758/APP.72.2.517

Kahrimanovic, M., Tiest, W. M. B., & Kappers, A. M. L. (2009). Haptic, visual and bimodal volume perception of 3-D objects (Vol. 38, pp. 144–144). Pion Ltd. Retrieved from http://www.perceptionweb.com/abstract.cgi?id=v090177

Kahrimanovic, M., Bergmann Tiest, W. M., & Kappers, A. M. L. (2010). Seeing and feeling volumes: The influence of shape on volume perception. Acta Psychologica, 134(3), 385–390. http://doi.org/10.1016/j.actpsy.2010.03.011

Kalvin, A. D., Rogowitz, B. E., Pelah, A., & Cohen, A. (2000). Building perceptual color maps for visualizing interval data. In Electronic Imaging (pp. 323–335). International Society for Optics and Photonics. http://doi.org/10.1117/12.387169

Krantz, D. H. (1972). A theory of magnitude estimation and cross-modality matching. Journal of Mathematical Psychology, 9(2), 168–199. http://doi.org/10.1016/0022-2496(72)90025-9

Krantz, D. H. (1972). Visual Scaling. In Visual Psychophysics (pp. 660–689). Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-88658-4_26

Krishna, A. (2007). Spatial perception research: an integrative review of length, area, volume, and number perception. Visual Marketing: From Attention to Action, 167–192.

Krishna, A. (2012). An integrative review of sensory marketing: Engaging the senses to affect perception, judgment and behavior. Journal of Consumer Psychology: The Official Journal of the Society for Consumer Psychology, 22(3), 332–351. http://doi.org/10.1016/j.jcps.2011.08.003

Laszlo, J. I., & Broderick, P. (1985). The size illusion: visual and kin aesthetic information in size perception. Perception, 14(3), 285–291. http://doi.org/10.1068/p140285

Lewandowsky, S., & Spence, I. (1989). Discriminating Strata in Scatterplots. Journal of the American Statistical Association, 84(407), 682–688. http://doi.org/10.2307/2289649

Lipkus, I. M., Samsa, G., & Rimer, B. K. (2001). General performance on a numeracy scale among highly educated samples. Medical Decision Making: An International Journal of the Society for Medical Decision Making, 21(1), 37–44. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11206945

Macdonald-Ross, M. (1977). How numbers are shown. AV Communication Review, 25(4), 359–409. http://doi.org/10.1007/BF02769746

Macmillan, N. A., Moschetto, C. F., Bialostozky, F. M., & Engel, L. (1974). Size judgment: The presence of a standard increases the exponent of the power law. Perception & Psychophysics, 16(2), 340–346. http://doi.org/10.3758/BF03203953

Marey, E. J. (1878). La méthode graphique dans les sciences expérimentales, particulièrement en physiologie et en médecine. Retrieved from http://www.bcin.ca/Interface/openbcin.cgi?submit=submit&Chinkey=118442

Martius, G. (1889). Über die scheinbare Größe der Gegenstände und ihre Beziehung zur Größe der Netzhautbilder. Philosophical Studies, 5, 601–617.

McCready, D. (1985). On size, distance, and visual angle perception. Perception & Psychophysics, 37(4), 323–334. http://doi.org/10.3758/bf03211355

Meihoefer, H.-J. (1973). The visual perception of the circle in thematic maps/experimental results. Cartographica: The International Journal for Geographic Information and Geovisualization, 10(1), 63–84. Retrieved from http://utpjournals.metapress.com/index/277155775417369T.pdf

Meihoefer, H.-J. (1969). The Utility Of The Circle As An Effective Cartographic Symbol. Cartographica: The International Journal for Geographic Information and Geovisualization, 6(2), 105–117. http://doi.org/10.3138/J04Q-1K34-26X1-7244

Mingolla, E., & Todd, J. T. (1986). Perception of solid shape from shading. Biological Cybernetics, 53(3), 137–151. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/3947683

Moyer, R. S., Bradley, D. R., Sorensen, M. H., Whiting, C., & Mansfield, D. P. (1978). Psychophysical functions for perceived and remembered size. Science, 200(4339), 330–332. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/635592

Nakajima, Y. (1987). A model of empty duration perception. Perception, 16(4), 485–520. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/3444731

Norman, J. (1980). Direct and indirect perception of size. Perception & Psychophysics, 28(4), 306–314. http://doi.org/10.3758/bf03204389

Norman, J. F., Phillips, F., & Ross, H. E. (2001). Information concentration along the boundary contours of naturally shaped solid objects. Perception, 30(11), 1285–1294. http://doi.org/10.1068/p3272

Norman, J. F., Norman, H. F., Lee, Y.-L., Stockton, D., & Lappin, J. S. (2004). The visual perception of length along intrinsically curved surfaces. Perception & Psychophysics, 66(1), 77–88. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15095942

Norman, J. F., Todd, J. T., Perotti, V. J., & Tittle, J. S. (1996). The visual perception of three-dimensional length. Journal of Experimental Psychology. Human Perception and Performance, 22(1), 173–186. http://doi.org/10.1037//0096-1523.22.1.173

Owen, D. H., & Brown, D. R. (1970). Visual and tactual form discrimination: Psychophysical comparison within and between modalities. Perception & Psychophysics, 7(5), 302–306. http://doi.org/10.3758/BF03210172

Peleg, M., & Campanella, O. H. (1988). On the mathematical form of psychophysical relationships, with special focus on the perception of mechanical properties of solid objects. Perception & Psychophysics, 44(5), 451–455. http://doi.org/10.3758/bf03210430

Peterson, L. V., & Schramm, W. (1954). How accurately are different kinds of graphs read? Audiovisual Communication Review, 2(3), 178–189. http://doi.org/10.1007/BF02713334

Phillips, F., & Egan, E. J. L. (2009a). Crossmodal information for visual and haptic discrimination. In IS&T/SPIE Electronic Imaging (p. 72400H–72400H–15). International Society for Optics and Photonics. http://doi.org/10.1117/12.817167

Phillips, F., & Egan, E. J. L. (2009b). Crossmodal information for visual and haptic discrimination. In IS&T/SPIE Electronic Imaging (p. 72400H–72400H–15). International Society for Optics and Photonics. http://doi.org/10.1117/12.817167

Pierre Chandon, & Ordabayeva, N. (2009). Supersize in One Dimension, Downsize in Three Dimensions: Effects of Spatial Dimensionality on Size Perceptions and Preferences. JMR, Journal of Marketing Research, 46(6), 739–753. http://doi.org/10.1509/jmkr.46.6.739

Pont, S. C., & Pas, S. F. te. (2006). Material-illumination ambiguities and the perception of solid objects. Perception, 35(10), 1331–1350. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17214380

Pont, S. C., & Koenderink, J. J. (2007). Matching illumination of solid objects. Perception & Psychophysics, 69(3), 459–468. http://doi.org/10.3758/bf03193766

Predebon, J. (1993). The familiar-size cue to distance and stereoscopic depth perception. Perception, 22(8), 985–995. http://doi.org/10.1068/p220985

Raiti, J. G., & Daniels, J. D. (2012). Direct And Pairwise Area Estimation Of Physical Shapes Through Vision And Touch. Perceptual and Motor Skills, 114(2), 391–396. http://doi.org/10.2466/27.PMS.114.2.391-396

Rensink, R. A. (2014). On the Prospects for a Science of Visualization. In Handbook of Human Centric Visualization (pp. 147–175). Springer New York. http://doi.org/10.1007/978-1-4614-7485-2_6

Rogowitz, B. E., & Treinish, L. A. (1994). Using perceptual rules in interactive visualization. In IS&T/SPIE 1994 International Symposium on Electronic Imaging: Science and Technology (pp. 287–295). International Society for Optics and Photonics. http://doi.org/10.1117/12.172680

Rogowitz, B. E., Treinish, L. A., Bryson, S., & Others. (1996). How not to lie with visualization. Computers in Physics, 10(3), 268–273. Retrieved from http://www.researchgate.net/profile/Lloyd_Treinish/publication/228554793_How_not_to_lie_with_visualization/links/09e41510fba73d2bec000000.pdf

Schneider, B., & Bissett, R. (1988). “Ratio” and “difference” judgments for length, area, and volume: are there two classes of sensory continua? Journal of Experimental Psychology. Human Perception and Performance, 14(3), 503–512. http://doi.org/10.1037/0096-1523.14.3.503

Schutz, H. G. (1961). An Evaluation of Methods for Presentation of Graphic Multiple Trends—Experiment III1. Human Factors: The Journal of the Human Factors and Ergonomics Society, 3(2), 108–119. http://doi.org/10.1177/001872086100300205

Schutz, H. G. (1961). An Evaluation of Formats for Graphic Trend Displays—Experiment II1. Human Factors: The Journal of the Human Factors and Ergonomics Society, 3(2), 99–107. http://doi.org/10.1177/001872086100300204

Seizova-Cajić, T. (1998). Size perception by vision and kinesthesia. Perception & Psychophysics, 60(4), 705–718. http://doi.org/10.3758/bf03206057

Sousa, R., Smeets, J. B. J., & Brenner, E. (2012). Does size matter? Perception, 41(12), 1532–1534. http://doi.org/10.1068/p7324

Spence, I. (1990). Visual psychophysics of simple graphical elements. Journal of Experimental Psychology. Human Perception and Performance, 16(4), 683–692. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2148585

Stanley, G. (1967). Magnitude estimates of distance based on object-size. Perception & Psychophysics, 2(7), 287–288. http://doi.org/10.3758/BF03211043

Stevens, S. S. (1971). Issues in psychophysical measurement. Psychological Review, 78(5), 426. http://doi.org/10.1037/h0031324

Stevens, S. S. (1957). On the psychophysical law. Psychological Review, 64(3), 153–181. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/13441853

Stewart, B. M., & Best, L. A. (2010). An Examination of Cleveland and McGill’s Hierarchy of Graphical Elements. In Diagrammatic Representation and Inference (pp. 334–337). Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-14600-8_46

Stuart, G. W., Bossomaier, T. R., & Johnson, S. (1993). Preattentive processing of object size: implications for theories of size perception. Perception, 22(10), 1175–1193. http://doi.org/10.1068/p221175

Sumi, S. (1989). Kinetic contours in rotating objects. Perception, 18(3), 293–302. http://doi.org/10.1068/p180293

Talbot, J., Setlur, V., & Anand, A. (2014). Four Experiments on the Perception of Bar Charts. IEEE Transactions on Visualization and Computer Graphics, 20(12), 2152–2160. http://doi.org/10.1109/TVCG.2014.2346320

Teghtsoonian, M. (1965). The Judgment Of Size. The American Journal of Psychology, 78, 392–402. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14344081

Teghtsoonian, R., & Teghtsoonian, M. (1970). Two varieties of perceived length. Perception & Psychophysics, 8(6), 389–392. http://doi.org/10.3758/BF03207030

Teghtsoonian, R., & Teghtsoonian, M. (1970). The effects of size and distance on magnitude estimations of apparent size. The American Journal of Psychology, 83(4), 601–612. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/5532010

Teghtsoonian, R. (1971). On the exponents in Stevens’ law and the constant in Ekman's law. Psychological Review, 78(1), 71–80. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/5545194

Todd, J. T., & Norman, J. F. (2003). The visual perception of 3-D shape from multiple cues: are observers capable of perceiving metric structure? Perception & Psychophysics, 65(1), 31–47. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12699307

Trafton, J. G., & Trickett, S. B. (2001). A new model of graph and visualization usage. DTIC Document. Retrieved from http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA480181

Trickett, S. B., Ratwani, R. M., & Trafton, J. G. (2006). Real-World Graph Comprehension: High-Level Questions, Complex Graphs, and Spatial Cognition. Cognitive Science. Retrieved from http://philpapers.org/rec/TRIRGC

Trickett, S. B., & Gregory Trafton, J. (2006). Toward a Comprehensive Model of Graph Comprehension: Making the Case for Spatial Cognition. In Diagrammatic Representation and Inference (pp. 286–300). Springer Berlin Heidelberg. http://doi.org/10.1007/11783183_38

Tyler, C. W. (1975). Stereoscopic tilt and size aftereffects. Perception, 4(2), 187–192. http://doi.org/10.1068/p040187

Vogel, J. M., & Teghtsoonian, M. (1972). The effects of perspective alterations on apparent size and distance scales. Perception & Psychophysics, 11(4), 294–298. http://doi.org/10.3758/BF03210382

Vurro, M., Ling, Y., & Hurlbert, A. C. (2013). Memory color of natural familiar objects: effects of surface texture and 3-D shape. Journal of Vision, 13(7), 20. http://doi.org/10.1167/13.7.20

Wagner, M. (2006). The geometries of visual space. Psychology Press. Retrieved from https://books.google.fr/books?hl=en&lr=&id=OoITS5F4N1AC&oi=fnd&pg=PP2&ots=2uyLfD7lGB&sig=ZWUikzqAQaja5Ji_GHfb2fB8d-U

Walker, J. T., & Walker, M. J. (1988). The apparent size of three-dimensional objects and their silhouettes: a solid-superiority effect. Perception, 17(1), 23–30. http://doi.org/10.1068/p170023

Warrington, E. K., & James, M. (1991). The visual object and space perception battery. Thames Valley Test Company Bury St Edmunds. Retrieved from http://www.opengrey.eu/item/display/10068/614948